Develop Rich-Ul Apps

Windows Forms do more than create form-based apps—use them to
create MDI and document-view—based apps too.

:_Te'.chn'oln;gj.';l"ﬂ!l'ﬁﬂx:) Q. Create MDI Apps

1 VB.NET

o C#

1 SQL Server 2000
2 ASP.NET

J XML

9 VB6

™ Note:

Karl Peterson's solutions
also work with VBS

Resources

Word 95 WordBasic Help
file: www.microsoft.com/
downloads/release.
asp?releaseid=26572

50

With Windows Forms
Microsoft callsits rich-Ul framework Windows Forms,
and when you start a new application, you get a
dialog-based (form-based) application. What if want
to develop multiple documentinterface (MDI) appli-
cations, a la Microsoft Foundation Classes (MFC),
with Windows Forms? What about using document-
view—based architecture with Windows Forms?

A:

Although Microsoft named its rich-UTI framework
Windows Forms, you can use Windows Forms to
develop any type of rich-Ul application you're famil-
iar with, from dialog-based to MDI applications. In
fact, you can create Windows Forms apps with the
same ease you used to create applications with MEC
or Visual Basic 6.0 (if not more easily).

Presently, there’s no wizard support for nonform-
based applications, but it's easy to create a nonform-
based application, starting with a form-based applica-
tion. However, unlike MDI applications, there’s no
out-of-the-box support for the document-view archi-

Figure 1 Build the Menu of the Main Frame’s Par-
ent Window. The Windows Forms visual designer lets
you build menu items, then map them to handling
methods. Windows Forms merge a child window's
menu automatically in its MDI parent’'s menu.

by Karl E. Peterson and Juval Lowy

tecture (using wizards or base classes), mostly because
nowadays, you're more likely to use Windows Forms
to develop a multitier application’s presentation tier,
and document-view architecture is rooted in the days
of the standalone application. However, nothing
prevents you from rolling your own document-view
architecture if you wish to.

You need to follow a few steps when developing
MDI-based applications. Create a new Windows
Formsapplication and call it MDIApp. You need two
types of windows: a main frame window and a child
window (although you could have multiple types of
child windows). The main frame window serves as the
parent window of all the child windows. The Visual
Studio .NET Windows Forms application wizard
provides a form class by default, which you can use as
the parent window. Display that form Properties
window, and set the IsMdiContainer property to
True. This sets the form’s background color immedi-
ately to the standard container dark gray, instead of

Figure 2 Create the MDI Application. You can create
as many child windows as you like, hosted in the main
parent frame window. Note that the child window
menu is merged with that of its parent.

VISUAL STUDIO MAGAZINE + JUNE 2002 « www.visualstudiomagazine.com

e

the light gray used in forms. Set the Window caption (the Text
property) to Main Win while you have the Properties window open.

Next, add a child window: From the Project menu, select Add
Windows Form, type ChildForm in the dialog box, and click on OK.
Set the new child form’s Background property to Window. For an
MDI application, the convention is to launch new child windows
(hosted in their parent main window) using the File | New menu item.
Inaddition, the convention is to merge theactive child window’s menu
with its parent window’s menu. To do that, you need to add a menu
to the parentand a menu to the child window. Starting with the child
window, drag a menu item control from the Toolbox and drop it on
the child window. Type “Some Opp” for the child single menu item.
Open the parent form, and drop a menu on itas well. Type File for the
top-level menu item, and New as a submenu item (see Figure 1).
Display the menu item events property page, and type OnFileNew
for the name of the method handling the Click event. This generates
the handling method. Add this code in the handling method:

private void OnFileNew(object
sender,EventArgs e)

ChildForm childForm = new
ChildForm{};

childForm.MdiParent = this;

childForm.Show();

The code is straightforward: You create a new child window, set its
MdiParent property to the parent frame, and display the child
window (see Figure 2). —/.L.

¢ Reflect Your Assembly Version
I'm trying to reflect my assembly version programmatically to
address some configuration management needs. My reflection code
can reflect any assembly actribute except AssemblyVersion. What's
going on?

A:

You use the AssemblyVersion attribute to specify your assembly
version (usually in the Assembly.cs or .vb file):

[assembly: AssemblyVersion ("1.2.3.4")]

However, AssemblyVersion is a special attribute whose value isn’t
recorded in the metadata but rather in the manifest. Because of that,
you can’t reflect it. If you want to reflect the assembly version
programmatically, you can use the Assembly type’'s GetName()
method. GetName() returns an instance of the AssemblyName class.
The AssemblyName class has a public property called Version, of a
class called Version. You can then either access individual version
numbers (see Listing 1) or simply convert the property to a string:

void TraceVersion(Assembly assembly)
{
Version version =
assembly.GetName().Version;

JUNE 2002 - www.visualstudi ine.com

VISUAL STUDIO MAGAZINE +

C# e Make the Most of the Version Class \

public sealed class Version :
ICToneable, [Comparable

{
[/Constructors
public Version();
public Version(int major.
public Version(int major,
public Version(int major,

build, int revision};

public Version(string version);

int minor);
int minor, int build);
int minor, int

/{Properties

public int Build | get;)
public int Major { get; |
public int Minor { get; }
public int Revision { get:)

{ /Methods

public virtual object Clonel);

int CompareTo(object obj):

public string ToString(int fieldCount);
}

Listing 1 The Version class provides a type-safe way of building and
retrieving an assembly version. You can access individual version
numbers, get the version as a string, and compare version numbers.

Trace.WriteLine("Version is " +
version.ToString(});

The Version class is a type-safe way of representing an assembly
version. You can build an assembly version using individual version
numbers, and you can compare two version numbers:

Version vl = new Version("1.2.3.4"});
Version v2 = new Version(5,6,7,8};
Debug.Assert(vl != v2);

—/.L

¢+ Determine If Word is Installed
My application needs to know if Microsoft Word is installed, and
if so, what version. [use this information to make the best possible
use of automation, when available. Can I dig this out of the Registry
somewhere?

A:

You could, but that sounds like an awful lot of work. You want to
optimize automation, so let’s use that technique to answer this
question. The Application object exposed by Word offers a Version
property, which you can query like this:

Public Function WordVersion{) As String
Dim obj As Object
' Quick test to determine if Word is
' installed, and return version.
On Error Resume Mext
Set obj = _

51

QA

-

CreateObject("Word.Application®)
WordVersion = obj.Version
Set obj = Nething
End Function

This function relies on ignoring an error that’s triggered if Word
isn’t installed. Test the return value first for length, as an empry
string indicates no response from (or no creation of) the queried
object. Now, you'll run into a slight problem if your specification
calls for automating Word 95 as well, because that version used
WordBasic rather than VBA. The good news is that newer versions
of Word continue to expose the Word.Basic object. So, to be as
universal as possible, you'd want to modify the preceding routine

like this:

Public Function WordVersion() As String
Dim obj As Cbject
' Quick test to determine if Word is
' installed,
On Error Resume Next
Set obj = Create0bject("Word.Basic")
WordVersion = obj.AppInfo$(2)

and return version.

obj.AppClose
Set obj = Nething
End Function

Use either of these functions by examining the string returned.

Discover CodeBase, the fastest database engine on
the market that's also fully xBASE file compatible.
Query a million-record table in 0.34 seconds, or read
300,000 records in just 0.59 seconds. It's lightning quick!

ADO/ODBC Support!
This application was
created without a single
line of source code! Use
native and 3rd party
controls with our new
ADO/OLE-DB and
ODBC support.
Creating database
programs has never been
easier!
+ Multi-user file compatible with FoxPro, Clipper and dBASE
v’ Client/Server, multi-user & single user support included
+ Small DLL loads quickly, simply and use few resources
v 100% Portable: Supports all popular compilers, OS’s and
the internet
W/ Reader’s Choice Award for 5 Years
W Royalty Free Distribution

SEQUIT ER°||||
www.codebase.com - info@codebase.com Fax:

SOFTWARE INC. Phone: (780) 437-2410

(780) 436-2999

52

An empty string indicates no automatable version of Word is
installed; otherwise, branch according to the string’s contents (see
Table 1). The Office group has gone out of its way to maintain
backwards compatibility in this case. In fact, you can develop
automation code for Word 95, even if it’s not installed on your
machine, by coding against the WordBasic model using whatever
version of Word you do have installed.

I recommend using WordBasic only in cases where you find
Word 95 installed, however. Using the newer Word.Application
object is preferable, both in terms of speed and robustness of code.
A further disincentive might be the fact that Microsoft no longer
supports the WordBasic model actively. (My thanks to Jonathan
West, Word MVP, for his valuable input to this response.) —K.E.P.

¢ Force Painting of Menu Checks

I liketo set the Checked and Enabled properties of some dropdown
menu items when the top-level menu is selected. For example, I use
a checkmark to indicate that the current selection is Bold, and this
attribute is far easier to test on demand than to track continuously.
I've noticed that the checkmarks aren’t always painted when the
menu first drops. Toggling the Enabled property doesn’t display
this paint problem. As it is now, the user must wave the cursor over
the item to force a repaint as the highlight bar moves over the item.
What can I do programmatically to force VB to paint menu
checkmarks properly?

A:

I've seen this same behavior, but never spent the time to track down
exactly when it was occurring. In other words, thanks for asking, as
this is something that’s irritated me too! I wrote a little test applet
that toggles the Checked property value of two first-level menu
items each time the top-level menu is dropped:

Private Sub mMain_Click(Index As Integer)
mTest(0),Checked = Not mTest(0).Checked

/ Version Return String

0"
“7.0a"
“7.0c"

“8.0"
“8.0 SR-1"
"8.0 SR-2"

"9.0"

"9.0 SR-1"
“9.0 SR-2"
“9.0 SR-2a"

“10.0"
“10.0 8P-1"

Word 95

Word 97

Word 2000

Word 2002

Table 1 Deal With Potential Win32 Versions of Word. If you're
going to automate Microsoft Word, be prepared to deal with many
possible versions. You can use the strings in this table to identify the
main variants to date. Using the Val() function against these strings, a
return value of 7 (or less) means you must use the Word.Basic ob-
ject, while a return of 8 or more allows full use of VBA.

VISUAL STUDIO MAGAZINE + JUNE 2002 + www.visualstudi

	Visual Studio June 02 VOL 12 NO 20 Page 1.pdf (p.1)
	Visual Studio June 02 VOL 12 NO 20 Page 2.pdf (p.2)
	Visual Studio June 02 VOL 12 NO 20 Page 3.pdf (p.3)

